
 Software Vulnerability Remediation 
Management Process

Agile7

Document Version: v1.1

Date: October 23, 2024

Author: Max Meinhardt

Agile7

maxm@agile7.com

www.agile7.com

https://www.agile7.com/


Software Vulnerability Remediation Management Process www.agile7.com

Introduction
The goal of an effective software vulnerability remediation management process is to ensure that risks 
are identified, communicated, and mitigated while maintaining a clear understanding of the project's 
time, scope, and cost. A thorough understanding of each remediation phase helps keep the project on 
track and ensures that vulnerabilities are effectively addressed. 

This document outlines a baseline project management process for remediating software security 
vulnerabilities, mitigating risks, and safeguarding your software. It can serve as a starting point or 
supplementary material when developing a project plan tailored to your specific needs.

Overview
The process of remediating software vulnerabilities 
has been divided into the five phases of the project 
management lifecycle, with an additional phase called 
"Sustaining," as shown in Figure 1.

Each of these stages involves tasks that guide a 
project from inception through to ongoing 
maintenance, helping to ensure an organized and 
thorough approach to vulnerability remediation.

The Process
In the initial conversation we will communicate with 
you to determine the project’s purpose and overall 
scope in order to ensure that we both agree that our 
consulting services align with your needs and you are 
ready to proceed to the Initiating stage below.

Phase 1 - Initiating

In this consultation, we give a candid and objective 
assessment of your remediation project. After this 
phase is completed, we should have the information 
that is required for a project charter. This should 
include a high-level understanding of the known constraints and assumptions, preliminary project 

2 of 9

Figure 1: Software Vulnerability Remediation 
Management Process

https://www.agile7.com/


Software Vulnerability Remediation Management Process www.agile7.com

milestones, a budget, and possibly a cost estimate range based on a top-down understanding of the 
project.

In general, the topics to discuss during this meeting are as follows:

1. The application's technologies, their age, build environment, and any known issues such as 
missing source code and libraries, deprecated technologies, software architecture problems, etc. 

2. Overview of must-fix and other vulnerabilities 
3. Project approach (eg. agile or waterfall) 
4. Estimated project budget 
5. Desired project end date 
6. Identify stakeholders, including crisis-handling contacts 
7. Top-down preliminary assessment (optional). This is the first iteration of the task of determining 

which known vulnerabilities we should fix first and whether those fixes should be grouped, 
tested, and deployed in specific phases. This strategy usually evolves as a deeper understanding 
of the vulnerabilities are developed and your business goals change.

Phase 2 - Planning

At this next stage, we will need to obtain more information to build on the findings from the Initiating 
consultation by estimating a more accurate time, scope, and cost. This will require identifying 
vulnerability risks and their associated business risks (if applicable) as well as project risks/difficulties 
and mitigation of all of these risk types.

During the Planning phase, we will address the following:

1. Scope and Logistics 
1. Bottom-up project assessment - In complex projects where we create a Scope 

Statement and Work Breakdown structure, we will need to analyze your project from the 
bottom-up by assessing the level of effort needed to remediate each of your application's 
vulnerabilities by reviewing your code and application's system environment. While 
doing so, it is good to do a preliminary code review to look for additional vulnerabilities 
(architectural issues, unsafe 3rd-party dependencies, etc). 

2. Tools, Infrastructure, and Logistics 
1. Preferred project management, code management, bug tracking system, and 

vulnerability management tool (eg. Fortify On Demand, Burp Suite Enterprise, 
Defect Dojo, BlackDuck(CodeDx), etc) if applicable. 

2. VPN, security and access details 
3. Hosting/staging server information 
4. Existing system learning curve 

2. Schedule 

3 of 9

https://www.agile7.com/


Software Vulnerability Remediation Management Process www.agile7.com

1. Time and Effort - In the process of identifying a schedule, we need to understand the 
amount of time and effort that will be involved to resolve as well as test the 
vulnerabilities. We may find that some issues can be grouped and are easy to fix yet 
others may sometimes require system modifications or significant underlying 
architectural changes. We will work with you to closely identify their risks in order to 
determine the best strategy to fully resolve or even mitigate them with less effort.

We will also need to address work hours, testing hours, time-zone overlap, local 
holidays, and leave.

2. Identifying false positives - If a list of vulnerabilities was taken from a code 
scanner/static analysis tool, there may be thousands of reported issues with some being 
false positives and others being bugs which are not security-related but should be 
resolved anyway. The standard process is to go through each of these issues and look at 
the associated code in order to determine their level of effort or identify them as false 
positives. Documenting (via a vulnerability management tool or within a Fortify .fpr file 
for example) the reason for labeling a false positive as well as details for complex fixes 
is also a standard process. 

3. Complex vulnerabilities - Vulnerabilities in business logic may require assistance 
within your organization to determine a level of effort. Software framework updates, 
authentication and session management architecture, and interaction with other systems 
can sometimes be time-consuming for various reasons. However, there may be ways to 
mitigate these risks and this would be discussed with you. 

4. Finding the fixes - The more vulnerability details that we have, the easier it will be for 
us to find where the problems reside in the code. For example, outputs from code 
scanning tools or manual code reviews should give information about the specific 
location in the code that they occur. This may not be the exact location where the cause 
or fix for the problems occur, but its close relationship to root-cause will help identify 
and fix them. 

3. Cost 
1. Bottom-up approach - With the Work Breakdown Structure (WBS), time, and risk 

breakdowns that we defined earlier, we will work with you to determine which 
activities, if any, should be removed or delayed in order to fall within your budget and 
time constraints. For example, not fixing low-priority vulnerabilities that were identified 
from a static analysis or via manual testing. 

2. Complex vulnerabilities - Issues that are complex to fix, such as large software 
framework updates or those utilizing interaction with other systems or authentication 
and session management architecture, may have a high time and risk quotient to justify a 

4 of 9

https://www.agile7.com/


Software Vulnerability Remediation Management Process www.agile7.com

dedicated full-lifecycle development effort. If these are encountered, we will work with 
you for a course of action. 

4. Risk 
1. Build environment risks - We will work on determining if there will be any problems 

creating a working application from your source code. If your application is complex 
and has not been maintained recently, we will need to quickly identify and assess any 
serious problems such as missing dependencies, etc.
Ideally, major risks for this scenario should be identified as soon as possible and 
preferably in the Initiating phase of this project. If you have developers currently 
maintaining the application properly, these risks should be minimal or absent. 

2. Vulnerability risks - We will work with you to align our knowledge of each 
vulnerability risk to your knowledge of the associated business risks if applicable. You 
may have already identified some, but we may identify others from our past experience 
with application security and from our preliminary source code review. 

5. Communication - We will need to finalize the modes of status reporting (email, phone, Skype, 
GoToMeeting, etc), frequency of status reporting (weekly/on-need), feedback cycle, ongoing 
collaboration tools (Trello, etc), timesheet maintenance option, and feedback response time. 

6. Quality 
1. Testing method - After identifying the risks of the vulnerabilities (they may be grouped 

together in many cases), we will identify the best approach to fix and test them. For 
example, if some vulnerabilities were identified from a static analysis tool, we would 
need to re-run it to validate fixes in this context. If others were found in a manual 
architectural or code review, fixes would of course need to be reviewed and tested as 
well. In all situations, testing via various tools, techniques (static, dynamic) and 
resources (integration testing by us and/or your QA team) will be used depending on 
what is currently in place and possibly including using other tools that we will discuss. 

2. Security compliance - If you have a security team, we can work closely with them in 
order to help fulfill your security compliance requirement (eg ATO Authority To 
Operate) for this project. If not, then we can fill this gap with regards to application 
vulnerability mitigation. 

7. Software Development Process 
1. Waterfall method - We recommend this method for small projects and will need a 

specific date to remediate as many vulnerabilities as possible from the scope, risk, and 
time assessment that was discussed with you earlier. Your most critical vulnerabilities 
that are easiest to fix will be remediated first. 

2. Agile method 
1. Essentially, the same tasks that are used in the Waterfall method above should 

apply for every sprint. This will allow you to more easily re-prioritize if needed. 

5 of 9

https://www.agile7.com/


Software Vulnerability Remediation Management Process www.agile7.com

2. We recommend placing the vulnerabilities and associated tasks in a defect 
tracking system where their progress can be updated, monitored, and assigned as 
needed for each sprint. 

3. If you have incorporated the running of application security testing tools into 
your continuous integration (CI) process and want to offload or improve the 
remediation of the found issues, we can either show your developers how to 
mitigate them as needed or let us do it for you by working in parallel. We can talk 
with you about how to do this while minimizing disruption and maintaining or 
improving process flow. 

Phase 3 - Executing

After the project's scope, schedule, and cost has been determined, we can go through the following 
steps to finalize the process of fixing, testing, and deploying the vulnerability fixes to your production 
environment.

1. Setup development environment and build working application 
1. Source control - We will need access to your source code. If it is in a file-system 

directory, then it will need to be moved into a source code repository. If the project is 
complex, then we will need access to it during the Planning stage of this project in order 
to bring the code into an IDE and more easily navigate through it in order to do a 
preliminary code review and bottom-up assessment. 

2. Database - We will need a copy of your database and there are various ways to get this. 
3. Issue tracking system - If you use an issue tracking software (eg. Jira) or vulnerability 

management tool that interfaces with one, we will need access to both so that we can 
monitor and maintain the vulnerability backlog. 

4. Syncing from production - In some cases, database schemas, certain system 
configurations, and/or software patches between production and test/staging 
environments may be different because of improper synchronization between the two. 
These environments should be aligned before starting the development process. 

2. Fix vulnerabilities 
1. Technical vulnerabilities - If the vulnerabilities were discovered from a code review or 

static analysis tool such as Fortify, then their approximate locations in the source code 
should be quickly identified in some cases and require further investigation in others. 
Identification of most false positives and issue groupings should have been identified in 
this project's Planning phase. 

2. Business Logic vulnerabilities - These vulnerabilities may have been found from a top-
down (testing as a user, dynamic/penetration testing) or bottom-up approach (code-
scanning/static analysis, architectural, or code-review). Some of their fixes may be 

6 of 9

https://www.agile7.com/


Software Vulnerability Remediation Management Process www.agile7.com

simple and others may require significant changes to the underlying architecture or need 
coordination of various stakeholders in your business, such as for authentication and 
other issues that would modify the user's experience. 

3. Confirm the fixes and perform general QA - After vulnerability remediation has been done, 
proper testing is necessary in order to determine that they have not broken previously working 
functionality. 

1. Testing method - Many will require a re-run of the scanning/static analysis tool in order 
to verify if the fix addressed the tool's finding. In some instances, these tools may still 
tag the same vulnerability after it has been fixed, but since the code changes are not 
identified by the tool's algorithm/rule-set in these cases, it will be labeled as such once 
testing has confirmed this.
Others will require a repeat of the manual test that was used to originally reproduce the 
problem. 

2. Full or partial regression - How and in what environment this is done will be 
determined by your existing process and resources as well as the scope of the changes. 

4. Deploy the updated application to Production - Once testing is completed in your staging 
environment, we will work with you to push your updated application to your production 
environment as needed for each sprint. The following steps should be done to increase the 
probability of a successful deployment. 

1. Write an installation and back-out procedure - This document should be included as 
part of the release package documentation. Deployment risk contingencies should be 
included within the instructions. For example, "if problem X happens, then complete this 
other step." 

2. Working with DevOps team - If you have a DevOps team with exclusive access to 
Production, we will need to work with them to enable your maintenance page, deploy 
the application, and stay present while we smoke-test your application to make sure that 
the deployment is successful and does not require a backout. We may need to monitor 
the application logs during smoke-testing. 

3. Production deployment failures - There are many reasons that applications can fail to 
deploy and run properly (or at all) when moving from a staging environment to 
production. For instance, there may be production-specific services or databases 
containing differences that exercise parts of the application's functionality which weren't 
able to be previously tested in the staging environment. Also, there may be different 
authentication servers, or perhaps the configuration of your staging environment has not 
been synced consistently to and from production during previous releases or system 
updates. 
These risks and others should be addressed during the Planning stage of this project and 
during testing of the application before deployment to production. Doing so is crucial in 

7 of 9

https://www.agile7.com/


Software Vulnerability Remediation Management Process www.agile7.com

order to ensure that the deployment is as swift and trouble-free as possible in order to 
minimize the amount of time that your website is down as well as efficiently utilize your 
devops resources during this period. 

4. Speed and efficiency - An effortless and problem-free deployment to Production is 
important to us. We have guided hundreds of releases and know how to properly 
mitigate risks during this process. Keeping your devops team waiting during 
troubleshooting or having them run the backout procedure is not time well spent, but a 
clean problem-free deployment is. 

5. Production post-deployment testing - Depending on your needs and the project's scope, we 
can work with you to determine the breadth of this action. 

Phase 4 - Controlling

As we progress through the project, we will communicate the status of our work items (as outlined in 
the Planning-Communication section) and collaborate with you to monitor the current scope and 
milestones. Deep analysis may reveal hidden complexities, additional vulnerabilities, or the need to 
apply risk contingencies as the project advances. Scope creep may occur in such instances, but by using 
your change-control process, continuously monitoring and assessing vulnerabilities and project risks, 
and addressing the most critical and quickly solvable issues first, we can significantly reduce software-
related business risks early on and re-assess less critical tasks later.

Phase 5 - Closing

Once the project has concluded, we will work with you to initiate the administrative closure process, 
ensuring that all final deliverables are provided (e.g., additional information we gathered about your 
build environment, architecture, and application vulnerabilities). We will also conduct a post-
implementation review to assess the project’s success, lessons learned, and any remaining 
vulnerabilities. If applicable, we will then discuss alignment with our sustainment services.

Phase 6 - Sustaining

You can rely on us to maintain the security of your software, whether through application security 
development within your team in a continuous integration environment, periodic code reviews and 
static analysis to address new vulnerabilities, or other tailored approaches to application vulnerability 
remediation. We are committed to solving these problems consistently and reliably.

8 of 9

Please contact us at info@agile7.com.

https://www.agile7.com/
mailto:info@agile7.com?subject=Requesting%20information


Software Vulnerability Remediation Management Process www.agile7.com

About Agile7
Agile7 provides software development services for application vulnerability remediation 
and software energy efficiency. Learn more at www.agile7.com.

Document Revision History
Author Version Date Description
Max Meinhardt 1.0 October 16, 2024 Initial version
Max Meinhardt 1.1 October 23, 2024 Change company logo and add document version and 

subtitle in title page. Add Version column to Document 
Revision History.

Author Biography
About Max Meinhardt

Max is the founder of Agile7 and he has over three decades of industry experience in software 
engineering and systems deployment leading the architecture and implementation of enterprise Web 
applications and carrier-class networking and telecommunications equipment firmware. He holds a BS 
in Computer Engineering Technology from Rochester Institute of Technology and an MBA from 
Thunderbird School of Global Management.

9 of 9

https://www.agile7.com/
https://www.agile7.com/

	Introduction
	Overview
	The Process
	Phase 1 - Initiating
	Phase 2 - Planning
	Phase 3 - Executing
	Phase 4 - Controlling
	Phase 5 - Closing
	Phase 6 - Sustaining

	About Agile7
	Document Revision History
	Author Biography

